The tidyverse is a set of packages that work in harmony because they share common data representations and API design. The tidyverse package is designed to make it easy to install and load core packages from the tidyverse in a single command.

The best place to learn about all the packages in the tidyverse and how they fit together is R for Data Science. Expect to hear more about the tidyverse in the coming months as I work on improved package websites, making citation easier, and providing a common home for discussions about data analysis with the tidyverse.


You can install tidyverse with


This will install the core tidyverse packages that you are likely to use in almost every analysis:

It also installs a selection of other tidyverse packages that you’re likely to use frequently, but probably not in every analysis. This includes packages for data manipulation:

Data import:

And modelling:

These packages will be installed along with tidyverse, but you’ll load them explicitly with library().


library(tidyverse) will load the core tidyverse packages: ggplot2, tibble, tidyr, readr, purrr, and dplyr. You also get a condensed summary of conflicts with other packages you have loaded:

#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages ---------------------------------------
#> filter(): dplyr, stats
#> lag():    dplyr, stats

You can see conflicts created later with tidyverse_conflicts():

#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>     select
#> Conflicts with tidy packages --------------------------------------
#> filter(): dplyr, stats
#> lag():    dplyr, stats
#> select(): dplyr, MASS

And you can check that all tidyverse packages are up-to-date with tidyverse_update():

#> The following packages are out of date:
#>  * broom (0.4.0 -> 0.4.1)
#>  * DBI   (0.4.1 -> 0.5)
#>  * Rcpp  (0.12.6 -> 0.12.7)
#> Update now?
#> 1: Yes
#> 2: No