Today we’re excited to announce htmlwidgets, a new framework that brings the best of JavaScript data visualization libraries to R. There are already several packages that take advantage of the framework (leaflet, dygraphs, networkD3, DataTables, and rthreejs) with hopefully many more to come.

An htmlwidget works just like an R plot except it produces an interactive web visualization. A line or two of R code is all it takes to produce a D3 graphic or Leaflet map. Widgets can be used at the R console as well as embedded in R Markdown reports and Shiny web applications. Here’s an example of using leaflet directly from the R console:


When printed at the console the leaflet widget displays in the RStudio Viewer pane. All of the tools typically available for plots are also available for widgets, including history, zooming, and export to file/clipboard (note that when not running within RStudio widgets will display in an external web browser).

Here’s the same widget in an R Markdown report. Widgets automatically print as HTML within R Markdown documents and even respect the default knitr figure width and height.


Widgets also provide Shiny output bindings so can be easily used within web applications. Here’s the same widget in a Shiny application:


Bringing JavaScript to R

The htmlwidgets framework is a collaboration between Ramnath Vaidyanathan (rCharts), Kenton Russell (Timely Portfolio), and RStudio. We’ve all spent countless hours creating bindings between R and the web and were motivated to create a framework that made this as easy as possible for all R developers.

There are a plethora of libraries available that create attractive and fully interactive data visualizations for the web. However, the programming interface to these libraries is JavaScript, which places them outside the reach of nearly all statisticians and analysts. htmlwidgets makes it extremely straightforward to create an R interface for any JavaScript library.

Here are a few widget libraries that have been built so far:

All of these libraries combine visualization with direct interactivity, enabling users to explore data dynamically. For example, time-series visualizations created with dygraphs allow dynamic panning and zooming:


Learning More

To learn more about the framework and see a showcase of the available widgets in action check out the htmlwidgets web site. To learn more about building your own widgets, install the htmlwidgets package from CRAN and check out the developer documentation.